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ABSTRACT

Critical fiber-matrix (FM) interface strength parameters were determined using a

micromechanics-based approach together with failure data from off-axis tension (OAT) tests.

The ply stresses at failure for a range of off-axis angles were used as input to a

micromechanics analysis that was performed using the personal computer-based MICSTRAN

code. FM interface stresses at the failure loads were calculated for both the square and the

diamond array models. A simple procedure was developed to determine which array had the

more severe FM interface stresses and the location of these critical stresses on the interface.

For the cases analyzed, critical FM interface stresses were found to occur with the square

array model and were located at a point where adjacent fibers were closest together. The

critical FM interface stresses were used together with the Tsai-Wu failure theory to determine

a failure criterion for the FM interface. This criterion was then used to predict the onset of

ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of

ply cracking in angle-ply laminates agreed with the test data trends.



INTRODUCTION

Damage-onset in polymer matrix laminated composite materials often initiates in the

form of ply-cracks. Ply cracks often lead to delaminations or disbonds along the interfaces

with neighboring plies [1, 2]. Under certain loading conditions, delaminations can lead to

premature catastrophic failure. Ply cracking could also accelerate moisture absorption. From

a design standpoint, it is, therefore, important to be able to predict the onset of ply cracking

for critical components.

In the past, both macromechanical and micromechanical approaches have been used to

predict the onset of ply cracking in a composite ply. Macromechanical failure theories such as

the Tsai-Wu [3] tensor theory are commonly used along with ply-level stresses to predict ply

failure under multiaxial stress states. Ply-level theories, however, do not provide any

information about the mode of failure within the ply. Furthermore, ply strength parameters,

determined for a given fiber volume fraction, cannot be used to predict failure in plies that

have a different fiber volume fraction. A different set of strength parameters would have to be

determined using appropriate ply testing for each fiber volume fraction of interest. Thus, ply

level failure criteria that were established for a laminated ply with a 60% fiber volume

fraction, for example, would not be directly applicable to predict yarn failure in a fabric

reinforced composite, for example, with a 75 % yarn fiber volume fraction.

For the prediction of ply cracking, if we assume that ply cracks result from a

coalescence of micro-cracks that initiate at the fiber-matrix (FM) interface, then, ply cracking

should be governed by critical stresses at the FM interface. A micromechanics based approach

is required to calculate these critical FM interface stresses.

A micromechanical approach could potentially overcome both the shortcomings of the

ply-level macromechanical approach. It could provide direct information about the mode of

failure. Failures occurring in either the fibers, the matrix, or the fiber-matrix interface could

be discerned. Also, since fiber volume fraction is a parameter in the micromechanics analysis,

micromechanical strength parameters determined for a certain fiber volume fraction could be
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directly used to predict the onset of cracking in a ply (or a yarn) with a different fiber volume

fraction. Furthermore, a micromechanics analysis can also account for thermal and hygral

stresses and, therefore, a single set of strength parameters could be used to predict ply

cracking for a range of hygro-thermal conditions, thereby, significantly reducing the number

of tests required to characterize ply cracking strength. Micromechanics-based strength

parameters, determined from in-plane tests, also have the potential of being directly applicable

to the prediction of composite strength under out-of-plane loading.

A micromechanics stress analysis, however, is generally more complicated than a ply-

level stress analysis. Simplified micromechanics analyses have been used in the past for

predicting ply failure. For example, Chamis [4, 5], Aboudi [6], and Sun [7] developed

micromechanics analyses to calculate average stresses in sub-regions within the constituents.

Simplified approaches often approximate circular fibers as square fibers [6, 7] and, therefore,

lack the ability to calculate accurate stresses along the FM interface. Finite element analyses

[8, 9, 10, 11] have often been used to overcome the shortcomings of the simplified

approaches. However, due to its computer-intensive nature, a finite element analysis is not

well suited for nlicromechanics-based failure prediction.

A micromechanics stress analysis, based on a classical elasticity solution [12, 13], that

has the ability to model circular fibers with transversely isotropic properties arranged in either

a square or a diamond array was developed recently by the authors [14]. Micromechanical

FM interface stresses for various thermal and mechanical loadings were shown to be in

excellent agreement with finite element results [14]. The analysis can be performed on a

personal computer [15] and is, therefore, ideally suited for the development and also the

application of micromechanics-based failure criteria.

The objective of the present study was to develop the basic concepts and procedures for

a micromechanics-based technique to predict the onset of ply cracking in laminated composites

or yarn splitting in textile composites. Ply cracking was assumed to be governed by critical

stresses at the FM interface. Critical FM interface stresses were determined based on an



elasticmicromechanicsanalysistogetherwith unidirectional,off-axis tension test data for a

range of FM interface stress states. These critical stresses were correlated using a form of the

Tsai-Wu tensor theory, appropriate for FM interface failure, to determine critical FM interface

strength parameters. These critical parameters were also used to predict the onset of ply

cracking in angle-ply composites.

ANALYSIS

Within a composite ply, fibers are arranged randomly and may resemble a square array

in some regions, a diamond array in some regions, and a hexagonal array in other regions.

Micronaechanics analyses usually assume that, within a ply, the fibers are arranged in a regular

repeating array. The square, diamond, and hexagonal arrays are often used to calculate overall

elastic constants and internal stresses in a composite ply. Under combined loading, the square

and diamond array models have been shown [8] to produce higher stress concentrations than

the hexagonal array model. The present study, therefore, used both the square and diamond

array models to calculate critical FM interface stresses under thermal and mechanical loading

conditions.

The micromechanics analysis for the square and diamond array models was developed

earlier [14] and has been implemented in the personal computer based Mi___cromechanical

Combined Stress Analysis (MICSTRAN) [15] program. This analysis was based on a classical

elasticity approach. Figure 1 shows the reference cylindrical (r-0-z) and Cartesian (1-2-3)

coordinate systems used in the analysis. The origin for both the models was located at the

center of the fiber and the 1- and z-axes were oriented along the fiber direction. The 2-axis

was constructed transverse to the fibers as shown, and the angle 0 was measured from the 2-

axis. As indicated by the shaded areas in Fig. 1, the analysis used the repeating unit cell

ABCD for the square array and EGH for the diamond array.

The fibers were assumed to be circular in cross-section, homogeneous, and orthotropie

with transverse isotropy in the 2-3 plane. The matrix was modelled as being homogeneous and



isotropic. The fiber andmatrix wereassumedto beperfectlybondedat the FM interface. A

stateof generalizedplanestrainwasassumed(eI = constant) for all loading cases except the

longitudinal shear (a12) loading case. Details of the analysis procedures were presented in

Ref. [14]. Only a brief outline of the overall procedure is included here.

The classical elasticity approach utilizing the Airy's stress function was used to analyze

both the square and diamond array models. A general solution to the governing biharmonic

equation was written in the form of a Fourier series, F, with arbitrary coefficients. The fiber

and matrix regions were assigned a different set of arbitrary coefficients. The expressions for

the stress components were determined from the stress function F by differentiation. The

strain components were expressed in terms of the arbitrary coefficients by using the

constitutive law. The expressions for the displacement components were obtained from the

strain components by integration. Internal boundary conditions at the FM interface were used

to satisfy stress equilibrium and displacement compatibility across the interface. These

boundary conditions provided equations relating the arbitrary coefficients in the fiber and the

matrix regions. External boundary conditions were satisfied at discrete points along the

boundary, for each loading case, to determine the arbitrary coefficients by a point matching

technique. This led to a truncation of the Fourier series and the accuracy of the computed FM

interface stresses was verified by comparing with finite element solutions [14]. Results from

the present analysis were in excellent agreement with the finite element results, for the square

array model, [14] over a range of thermal and mechanical loading conditions. Results from

the diamond array model are also expected to be accurate since the same stress function and

procedure were used in the diamond array analysis.

Since the present study used an elastic analysis to calculate FM interface stresses, it was

necessary to also check for matrix yielding. Matrix yielding was predicted using a Von Mises

yield criterion [16] along with matrix stresses calculated using both the square and the diamond

array models. Only those test cases for which specimen failure occurred before the onset of

matrix yielding could be analyzed using the present elastic micromechanics analysis. Cases for



which matrixyielding precededspecimenfailurewerenot consideredin this studysincethey

would requiretheuseof anelasto-plasticmicromechanicsanalysis.

TEST DATA

Off-axis tension (OAT) tests, for a range of off-axis angles, provide ply strength data

for a range of ply stress states. Previously published test data [17] for the AS/3501-5A

graphite/epoxy composite material was used in the present study. Room temperature, dry

conditions were reported for all the test cases that were analyzed here. Test specimens were

1.3 to 1.9 cm wide (with straight sides) and 7.5 to 12.7 cm long in the gage section. The final

failure of the off-axis specimens was assumed to have occurred at the same load at which ply

cracks initiated in the gage section. The ply stresses at failure (or at the onset of ply cracking)

for the above tests are tabulated in Table I. These ply stresses were used as input to the

micromechanics analysis to compute FM interface stresses at failure for each off-axis angle.

Both the square and the diamond array models were used to compute these FM interface

stresses.

PREDICTION OF THE ONSET OF PLY CRACKING

Although fibers are usually randomly arranged within a composite ply, the present

study assumes that stresses computed using a regularly packed fiber array may be used to

compute critical FM interface stresses. Within a composite ply, failure could initiate either in

the matrix or at the FM interface. Under the combined action of shear and tensile normal

stresses, it is assumed, that failure initiates at the FM interface and not in the matrix for two

reasons: (i) the adhesive strength of the bond between the matrix and the fiber should be lower

than the cohesive strength of the matrix, especially, under the action of tensile normal stresses,

and (ii) the FM interface is subjected to higher stresses than the matrix. Furthermore, it was

assumed that, for a high volume fraction polymer composite, FM interface failure at a critical

point along the FM interface leads to a critical cross-sectional plane in the composite ply which



precipitatesply failure. Thus, ply stressesat the failure loads for off-axis tension tests were

used to compute FM interface stresses that caused interface failure.

The FM interface is subjected to a combination of normal and shear stresses even under

a uniaxial ply stress state [14]. Thus, to calculate critical FM interface strength parameters

that characterize FM interface strength, it would be necessary to use an adhesive strength

criterion that has been developed for such a combined state of stress. However, because such

a strength criterion was not available, a phenomenological approach was necessary.

Two different approaches have been used for the evaluation of the bond strength

between two different materials. The first approach uses an abrupt transfer model in which the

properties of the two materials are assumed to be unchanged as they approach the interface and

the interface is assumed to be a small contact layer (of negligible thickness) where

intermolecular links exist between the two materials. The second approach uses a diffusion

interlayer concept in which the contact between the two materials is made within a layer of

finite thickness. The material properties of the diffusional contact layer are generally different

from the two original materials. Uncertainties regarding the mechanical and strength

properties of the diffusional layer usually limit the use of the latter approach.

The present study used the concepts of the abrupt transfer model [18] to compute the

critical stresses at the FM interface that caused FM interface failure which led to the onset of

ply cracking. The intermolecular links in the contact layer, for the abrupt transfer model,

were assumed [18] to be broken only under tensile action. Such tensile action is possible only

when normal tensile stresses, orr, and, shear stresses, +or0 and +orz are active either

individually or simultaneously at the contact layer. Any other normal (-°rr, +__o00, +---ozz) or

shear (._..O0z) stresses do not lead to a failure of the intermolecular links in the contact layer.

The only three stress components active along the FM interface are Orr, +oto and -t-o n

[14]. At the failure load, these stresses combine, according to some physically admissible

functional relationship, to become critical and contribute to the failure of the FM bond. This

relationship between the normal and shear stresses constitutes a FM interface strength



criterion. The Tsai-Wu [3] tensor theory provides one such functional relationship. It is well

suited to the prediction of FM interface failure since it can handle multi-axial stress states and

allows for different strengths under tensile, compressive, and shear loading.

Using the three stress components that are active at the FM interface along with the

assumption that the strength of the FM bond is infinite under compressive air stress, it was

shown in [ 18] that the Tsai-Wu tensor theory for composite failure can be used to derive the

following interface strength criterion:
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where S n is the FM interface strength normal to the interface and S s is the shear strength of the

FM interface. The shear strength, S s, was assumed to be the same in the axial (z) and

tangential t0) directions. The combination of the _rr, -I-t_rO and +a= stresses at the FM

interface which satisfies the interface strength criterion of Eqn. (1) will be referred to as

critical FM interface stresses in the rest of this paper. Ply failure was assumed to initiate when

stresses calculated for either the square or the diamond array combined to become critical at

the FM interface.

Since the two shear stresses at0 and arz act on the same area at the FM interface (see

Fig. 2), they can be combined as:

= ) (2)

where "tcrr is the effective shear stress acting at the FM interface. The interface strength

criterion in Eqn. (1) can now be written as:
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The FM interface strength criterion given by Eq. (3) was used in the present study. It was

also useful to calculate a resultant stress, arc s, at the FM interface by combining the normal

stress, arr, and the effective shear stress, Xcf f, as

(I=, = _(a% + 't:_rr) (4)

The strength parameters S n and Ss in Eqn. (3) were determined by a three step

procedure:

(i) FM interface stresses were calculated for each off-axis failure case using both the square

and diamond array models in MICSTRAN.

(ii) Critical FM interface stresses ari and xer f were determined for each test case by

considering FM interface stresses for both the square and the diamond array models. Since the

magnitudes and the locations of the peak a n, +__at0 and +an, stresses at the FM interface

were, in general, different for the square and the diamond array models a special procedure

was used to determine the magnitude and location of the critical FM interface stresses and also

the array which would be more critical at the failure load. For each failure case, the interface

location and fiber array model with the largest resultant stress, arc s, (see Eqn. (4) was assumed

to be the the failure initiation site. The FM interface stresses at this location and for that fiber

array were used as the critical FM interface stress values. Critical stresses were calculated,

using this procedure, for each off-axis test case.

(iii) The calculated critical FM interface stresses, for a range of off-axis angles, were used

together with Eqn. (3) in a regression analysis to determine the unknown strength parameters

S n and S s.



RESULTS AND DISCUSSION

For the AS/3501-5A graphite/epoxy composite, tile thermo-mechanical properties for

the 3501-5A epoxy matrix were not available. It was assumed that properties for the 3501-6

epoxy, made by the same manufacturer, would be similar to 3501-5A epoxy properties [19,

20] which are given in Table II. The longitudinal modulus for the AS fibers was available

from the manufacturers data sheets [21]. Other fiber properties (see Table III) were estimated

using a micromechanics analysis [15] from the properties of the matrix [19, 20] and the uni-

directional composite [18]. A fiber volume fraction of 0.62 was used for all the analyses of

the test data. The average ply stresses at failure (see Table I) were used as input to the

micromechanics analysis for each test case. Thermal residual stresses due to cooldown from

the curing temperature were computed by using AT = -100 °C for all cases. These thermal

residual stresses were superimposed with stresses due to mechanical loading to calculate FM

interface and matrix stresses at failure.

In the following sections, test cases which may be analyzed using the present elastic

analysis are identified. Next, the results for the FM interface stresses are presented for

selected test cases. Then, critical FM interface stresses are presented for each test case and

critical FM interface strength parameters are calculated. Finally, critical interface strength

parameters are used to predict the onset of ply cracking in AS/3501-5A laminates having a

range of ply angles.

Matrix Yielding

The matrix stresses at the FM interface for different combinations of applied normal

stress,o22 , and shear stress, o12, were calculated using both the square and diamond array

models. These matrix stresses were used with the Von Mises yield criterion [16] and the

matrix shear yield stress (Table II) to predict the applied stress level at which matrix yielding

would occur at the FM interface. Figure 3 shows the predicted onset of matrix yielding. The
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solid symbolsin Fig. 3 indicatetheoff-axis tensionstrength[17] for theAS/3501-5A material

for various off-axis angles, _t. The shear dominated cases with ct = 15 and ot = 30 deg failed

after the onset of matrix yielding. The normal stress dominated cases with ot = 60, 75, and,

90 deg failed before the onset of matrix yielding for both the square and the diamond array

models. These cases may, therefore, be analyzed by an elastic micromechanics analysis. The

ot = 45 deg case was a borderline case for which matrix yielding was predicted before failure

using the square array model while the diamond array model did not predict any yielding.

This case was also included in the present analysis for the determination of critical FM

interface strength parameters. The ot = 15 and ot = 30 deg cases would require an elasto-

plastic analysis to accurately compute the FM interface stresses at failure and were not

analyzed using the present elastic analysis.

FM Interface Stresses

Figure 4 shows the stresses at the FM interface calculated using both the square and the

diamond array models at the failure stress for the transverse tension (or = 90 °) test. In the

absence of an applied longitudinal shear stress, the only stresses acting at the FM interface are

the radial Or, stress and the shear g_0 stress. The peak radial stresses for both the arrays (after

accounting for thermal residual stresses) occur at 0 = 0° (i.e. where the fibers are closest

together for the square array and farthest apart for the diamond array, see Fig. 1). The radial

stress concentration factor (o_o22) for the square array is 1.1 which is about 10% higher than

that for the diamond array. It was shown in Ref. [14] that the radial stress concentration is not

sensitive to fiber volume fraction (or fiber spacing). The peak or0 stress for the diamond array

is -32.88 (located at 0 = 40 °) which is about 27% higher than the square array peak located at

0 = 60 °. The higher shear stresses lead to higher octahedral shear stresses and cause matrix

yielding at lower applied 022 stresses for the diamond array as compared to the square array

(see Fig. 3).
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The FM interface stresses at the failure stress for an off-axis angle ot = 60 deg are

shown in Fig. 5. The arz stress is active at the FM interface in addition to the art and at0

stresses. In fact, these three stress components act at the FM interface for all OAT test cases,

except, the transverse tension test case. For the cz = 60 deg case, the peak art and a m stresses

are almost equal for the square array model and occur at 0 = 0o. For the diamond array, the

peak orr stress occurs at 0 = 0 o and is 28% higher than the orz peak stress which occurs at

0 = 45 o. As for the transverse tension case, the peak Or0 stress for the diamond array is 27%

higher than that for the square array. The three stress components shown in Fig. 5 combined

to become critical at some point along the FM interface at failure. The location along the FM

interface where the stresses would become critical is not obvious. Furthermore, it is also not

clear which array would be more critical at the failure stress.

Critical FM Interface Stresses and Strength Paramelers

The location of the critical FM interface stresses and the array which produced the

more critical stresses were determined by calculating the resultant interface stress arc s as

described earlier (see Eqs. (2) and (4)). Figure 6 shows the are s stress around the FM

interface calculated for the ct = 60 deg case using both the square and diamond array models.

Although the Ore s stress for the diamond array is higher in the 0 = 300-70 ° region, the peak

are s stress occurs at the 0 = 0 o location for the square array. Thus for the ct = 60 deg case,

the critical FM interface stresses occurred at 0 = 0 o and the square array was more critical

than the diamond array. This procedure was repeated for the other OAT test cases.

Figure 7 shows the critical stresses for all the OAT test cases analyzed in this study on

a _rr - xcfr plot. The effective shear stress, "tcrr, at the FM interface was calculated by

combining the shear stress components acting on the interface (see Eq. (2)). Based on the

critical FM interface stresses in Fig. 7, it is clear that OAT tests can be used to induce a wide

range of critical stress states at the FM interface. For all the cases analyzed, the critical

stresses occurred at the 0 = 0 ° location and the square array model was more critical in each
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case. These critical stresses were used in the computation of critical FM interface strength

parameters which are required in the interface strength criterion of Eq. (3).

As described earlier, the critical strength parameters S n and Ss (see Eq. (3)) were

determined by using the critical FM interface stresses in Fig. 7 along with Eq. (3) in a

regression analysis. Figure 8 shows the critical FM interface stresses along with the calculated

strength parameters Sn and S s and a plot of Eq. (3) using these strength parameters.

Equation (3) correlates well with the critical stresses computed from OAT failure data and

provides a means to predict FM interface failure over the range of stress states shown in Fig.

8.

It is important to note that the application of Eq. (3) has been demonstrated in the

present study only for combinations of longitudinal shear and tensile normal stresses that occur

in OAT tests. For ply stress states that involve combinations of longitudinal shear and

compressive normal stresses, ply cracking may not initiate as a result of FM interface failure

and a different failure criterion may be required.

Prediction of Ply Crackina Strength for Anale-Ply Laminates

The critical interface strength parameters Sn and S s were used together with Eq. (3) to

predict the onset of ply cracking in angle-ply laminates made of AS/3501-5A over a range of

ply angles. An incremental load approach was used in the prediction of ply cracking. At each

load increment, classical lamination theory (CLT) was used to compute stresses in each off-

axis ply. CLT was also used to compute thermal residual stresses in each ply. The resultant

(mechanical + thermal) stresses were then applied to the micromechanics models.

MICSTRAN was used to compute FM interface stresses. The ar_ procedure, described

earlier, was then used to determine the fiber array with the critical FM interface stresses. Ply

cracking was predicted for the load at which the calculated FM interface stresses, for the

critical fiber array, satisfied the failure criterion of Eqn. (3) at some inteffaeial location.
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Figure 9 shows the predictions for the onset of ply cracking over a range of ply angles.

Tension strength data [17] for the AS/3501-5A material, for the +75 deg and the +60 deg

laminates are also shown in Fig. 9. The prediction and experimental data for the transverse

tension test, shown earlier in Fig. 8, is also plotted in Fig. 9. The predicted increase in ply

cracking strength with decreasing laminate angle is consistent with the test data. Note that the

data corresponds to ultimate failure while the predictions are for the onset of ply cracking.

For the 90 deg and __+75 deg laminates the onset of ply cracking and ultimate failure probably

occurred in quick succession, however, t'or the +60 deg laminate ply cracking could have led

to the progression of delamination before final failure occurred. Further testing is required to

fully verify the predictions in Fig. 9.

SUMMARY

Critical fiber-matrix (FM) interface strength parameters were determined using a

micromechanics-based approach together with test data from off-axis tension (OAT) tests.

OAT test data for the AS/3501-5A material system were used. The ply stresses at failure for a

range of off-axis angles were used as input to a micromechanics analysis that was performed

using the personal computer-based MICSTRAN program. The FM interface stresses at the

failure loads were calculated for both the square and the diamond array models. Test cases for

which failure preceded matrix yielding were analyzed using the present elastic analysis. A

simple procedure was developed to determine the locations of the critical FM interface stresses

and the critical fiber array for each OAT test case. The critical FM interface stresses were

used together with the Tsai-Wu failure theory to determine critical parameters at the FM

interface. These critical parameters were then used to predict the onset of ply cracking in

angle-ply laminates for a range of laminate angles.

Analysis results indicated that OAT tests could be used to induce a wide range of stress

states at the FM interface. The magnitudes and locations of the peak stresses computed using

the square and the diamond array models were quite different. The square an'ay led to higher
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normal and longitudinal shear stresses while the diamond array usually led to higher transverse

shear stresses at the FM interface.

For the cases analyzed, critical FM interface stresses were found using the square array

model and were located at a point where adjacent fibers were closest together. The Tsai-Wu

failure theory, applied at the FM interface, provided a good correlation with test data.

Predictions for the onset of ply cracking in angle-ply laminates made using the present

micromechanics-based critical strength parameters followed the trends in the test data but need

further verification.

15



REFERENCES

1. Crossman,F. W. and Wang, A. S. D.: "The Dependenceof TransverseCrackingand

Delaminationon Ply Thicknessin Graphite/EpoxyLaminates," Damage in Composite

Materials, ASTM STP 775, American Society for Testing and Materials, Philadelphia,

1982, pp. 118-139.

2. Reifsnider, K. L. and Talug, A.: "Analysis of Fatigue Damage in Composite Laminates,"

h_ternational Journal of Fatigue, Vol. 3, No. 1, Jan. 1980, pp. 3-11.

3. Tsai, S. W. and Wu, E. M.: "A General Theory of Strength for Anisotropic Materials," J.

Comp. Mater., Vol. 5, Jan. 1971, pp. 58-80.

4. Chamis, C. C.: "Simplified Composite Micromechanics for Predicting Microstresses," J.

Reil_rced Plastics and Composites, Vol. 6, July 1987, pp. 268-289.

5. Chamis, C. C.: "Simplified Composite Micromechanics Equations for Strength, Fracture

Toughness, and Environmental Effects," SAMPE Q., Vol. 15, No. 4, July 1984, pp. 41-

55.

6. Aboudi, J.: "Micromechanical Analysis of the Strength of Unidirectional Fiber

Composites," Comp. Sci. Technol., Vol. 33, 1988, pp. 79-96.

7. Sun, C. T.: "Modeling Continuous Fiber Metal Matrix Composite as an Orthotropic

Elastic-Plastic Material," Metal Matrix Composites: Testing, Analysis and Failure Modes,

ASTM STP 1032, W. S. Johnson, Ed., American Society for Testing and Materials,

Philadelphia, 1989, pp. 148-160.

8. Foye, R. L.: "An Evaluation of Various Engineering Estimates of the Transverse

Properties of Unidirectional Composites," Proc. lOth Nat. Symp., Soc. Aerosp. Mater.

Process Eng., San Diego, Calif., Nov. 9-11, 1966, pp. G-31 to G-42.

9. Bigelow, C. A., Johnson, W. S., and Naik, R. A.: "An Comparison of Various

Micromechanics Models for Metal Matrix Composites, Mechanics of Composite Materials

and Structures, Eds. J. N. Reddy and J. L. Teply, Book No. HOO464 - 1989, pp. 21-31,

The American Society of Mechanical Engineers.

16



10.Wisnom, M. R.: "Factors Affecting theTransverseTensileStrengthof Unidirectional

ContinuousSilicon CarbideFibre Reinforced6061Aluminum," J. Comp. Mater., Vol. 24,

No. 7, July 1990, pp. 707-726.

11. Nimmer, R. P., Bankert, R. J., Russell, E. S., Smith, G. A., and Wright, P. K.: "Micro-

mechanical Modeling of Fiber/Matrix Interface Effects in Transversely Loaded SiC/Ti-6-4

Metal Matrix Composites, J. Comp. Tech. & Res., Vol. 13, No. 1, Spring 1991, pp. 3-13.

12. Kobayashi, S. and Ishikawa, T.: "Elastic Properties of Unidirectional Fiber-Reinforced

Composites," Fukugo Zairyo Kenkyu (Composite Materials and Structures), Vol. 3, No. 3,

1974, pp. 12-20.

13. Ishikawa, T. and Kobayashi, S.: "Elastic Properties of Unidirectional Fiber-Reinforced

Composites II," Fukugo Zairyo Kenkyu (Composite Materials and Structures), Vol. 3, No.

4, 1974, pp. 23-31.

14. Naik, R. A. and Crews, J. H. Jr.: "Closed-Form Analysis of Fiber-Matrix Interface

Stresses Under Thermo-Mechanical Loadings," NASA TM- 107575, Mar. 1992, National

Aeronautics and Space Administration, Hampton, Virginia.

15. Naik, R. A.: "Micromechanical Combined Stress Analysis - MICSTRAN, A User

Manual," NASA CR- 189694, Oct. 1992, National Aeronautics and Space Administration,

Hampton, Virginia.

16. Mendel son, A.: Plasticity Iheory and Application, Robert E. Krieger Publishing

Company, Malabar, Florida, 1983.

17. Kim, R. Y.: "On the Off-Axis and Angle-Ply Strength of Composites," Test Methods and

Design Allowables for Fibrous Composites, ASTM STP 734, C. C. Chamis, Ed., American

Society for Testing and Materials, 1981, pp. 91-108.

18. Skudra, A. M.: "Micromechanics of Failure of Reinforced Plastics," Chapter 1, Handbook

of Composites, Vol. 3 - Failure Mechanics of Composites, Eds., G. C. Sih and A. M.

Skudra, 1985, Elsevier Science Publishers B. V., pp. 1-69.

17



19.Adams,D. F. and Schaffer, B. G.: "Analytical/Experimental Correlations of Stiffness

Properties of Unidirectional Composites," Composites Technol. Rev., Vol. 4, No. 2,

Summer 1982, pp. 45-48.

20. Adams, D. F.: "A Micromechanics Analysis of the Influence of the Interface on the

Performance of Polymer-Matrix Composites," Jl. Reinfi_rced Plastics and Composites,

Vol. 6, Jan. 1987, pp. 66-88.

21. "Hercules Magnamite Graphite Fibers," Hercules, Inc., Magna, Utah, 1978.

18



Table I.- Ply stressesat failure for off-axis tension(OAT) tests[17].

Fiber angle,deg. ell, MPa

90 0.0

75 4.1

60

45

30

15

18.0

45.5

101.4

288.0

¢_22,MPa

51.7

56.7

54.1

45.5

33.8

20.7

012 , MPa

0.0

15.2

31.2

45.5

58.5

77.3

Table II.- Thermo-mechanical properties for 3501-6 epoxy [19,20]

E, GPa

4.3

V

0.34

CTE

(10-6/oC)

40.0

Shear yield

stress, MPa

56.3

Table III.- Estimated thermo-mechanical properties of AS fibers.

El 1, E22_

GPa GPa

220.0

[Ref. 21] 14.0

i

VI2, V23

VI3

0.25 0.27

G12,

GI3 , GPa

60.0

G23,

GPa

5.5

(CTE) l l

(10-6l °C)

-0.6

(CTE)22

(10-6/oC)

15.0
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